

MaryLie/IMPACT: A Parallel Particle Simulation Code with Space Charge for Modeling Beam Dynamics in Linacs and Rings

Robert D. Ryne Lawrence Berkeley National Laboratory

ICFA Beam Dynamics Workshop on Space-Charge Simulation Trinity College, Oxford April 2-4, 2003

Performed in Collaboration with

- A. Dragt, U. Md.
- T. Mottershead, P. Neri, P. Walstrom, LANL
- J. Qiang, LBNL
- R. Samulyak, BNL
- V. Decyk, UCLA

MaryLie/IMPACT: Overview

- MaryLie/IMPACT (ML/I) is a hybrid code that combines the beam optics capabilities of MaryLie with the parallel PIC capabilties of IMPACT
 - Inherits MaryLie map generation routines, map analysis routines, optimization capabilities, program flow capability, (enhanced) front end
- Enhanced front end
 - MAD lattice description, also backward compatible w/ MaryLie
 - Methodical treatment of units!
- Wide applicability
 - Linear, circular, other types of machines
 - With and without space charge
 - With and without acceleration
- Performance optimization of tracking routines (25% peak)
- Example suite includes benchmarks of test cases w/ known solutions
- Wake field module (Developed by R. Samuyak, BNL)

Treatment of Units in ML/I

- Issue of units has no doubt caused many accelerator physicists hours of frustration and lost productivity
 - note my grey hair; lack thereof of some colleagues
- ML/I allows arbitrary specification of ℓ, □, □, where 6-vector is (x/ℓ, p_x/□, y/ℓ, p_y/□, □t, p_t/□ℓ□)
 - Common choices are:
 - ✓ Magnetostatic systems: $\Box = p_0$, $\ell = 1$, $\Box \ell / c = 1$
 - ✓ Systems with acceleration: $[=m_0c, [=]_{bunch}, \ell = c/[]$
- New UNITS command:
 - myunits: units, l=1.0, p=0.8, w=2.856e9

New Commands (selected)

- autoslice: automatic slicing of thick elements
 - SLICES = # of slices, L = distance between slices, CONTROL =
 local/global/none
- autoapply: automatic application of a commands
 - NAME= name of menu element or line
- autotrack: automatic tracking of particles
 - TYPE=taylorN/symplecticN
- autoconcat: automatic concatenation of maps
- poisson: select/set parameters of Poisson solver
 - NX=, NY=, NZ=, ngridpoints= fixed/variable, boundingbox=fixed/variable...
- raytrace: ray trace command
 - NORDER=, NTRACE=, NWRITE=, SEQUENCELENGTH=, PRECISION=,
 MIN=, MAX=, INFILE=, OUTFILE=, CLOSE=, FLUSH=
- units: specification of units
 - TYPE=, L = scale length, P = scale momentum, F = scale freq, $W = scale \ angular \ freq$, $T = scale \ time$

Prologues in Particle Data Files

- Headers contain info regarding the data that follow:
 - Descriptive text
 - Scale length
 - Scale momentum
 - Scale time
- Code can read the prologue, convert the data (if desired) to those units being used in the current simulation
 - Frees the user from the headache of unit conversion

Test Suite

- Cold uniform beam in a periodic channel {FODO + rf cavities} with/without space charge
- KV beam in a FODO channel using 3D Poisson w/ periodic boundary conditions in z
- Stationary spherically symmetric thermal or bi-thermal distribution in a constant focusing channel
- Long beam in a 3D constant focusing channel with k_x≠k_y, k_z«k_x,k_y
 - In collaboration w/ J. Qiang, I. Hofmann, G. Franchetti

